On the non‐homogeneous quadratic Bessel zeta function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Non Homogeneous Quadratic Bessel Zeta Function

From the point of view of differential geometry and mathematical physics, the Riemann zeta function appears as the operator zeta function associated to the Laplacian operator on the line segment [18] [17] [5] [6] [14]. A natural generalisation of this setting, is to consider a Sturm Liouville operator instead, i.e. a singularity at one of the end points [9] [10] [11] [7] [8][16]. This leads aga...

متن کامل

Shifted quadratic Zeta series

It is well known that the Riemann Zeta function ζ ( p ) = ∑∞n=1 1/np can be represented in closed form for p an even integer. We will define a shifted quadratic Zeta series as ∑∞ n=1 1/ ( 4n2−α2)p . In this paper, we will determine closed-form representations of shifted quadratic Zeta series from a recursion point of view using the Riemann Zeta function. We will also determine closed-form repre...

متن کامل

A Quadratic Tail Of Zeta∗

Quadratic trigamma functions and reciprocal binomial coeffi cients sums are investigated in this paper. Closed form representations and integral expressions are developed for the infinite series.

متن کامل

Zeta Function Determinants on Four {

Let A be a positive integral power of a natural, conformally covariant diierential operator on tensor-spinors in a Riemannian manifold. Suppose that A is formally self-adjoint and has positive deenite leading symbol. For example, A could be the conformal Laplacian (Yamabe operator) L, or the square of the Dirac operator r =. Within the conformal class fg = e 2w g 0 j w 2 C 1 (M)g of an Einstein...

متن کامل

Zeta-function on the generalised cone

Abstract: The analytic properties of the ζ-function for a Laplace operator on a generalised cone IR × MN are studied in some detail using the Cheeger’s approach and explicit expressions are given. In the compact case, the ζ-function of the Laplace operator turns out to be singular at the origin. As a result, strictly speaking, the ζ-function regularisation does not “regularise” and a further su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2004

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579300015552